AWS Well-Architected Framework —,

Serverless Land Patterns —,
AWS Lambda Best Practices —

DynamoDB Design Patterns —

Event-Driven Architecture on AWS —

Scale compute: ASG, Lambda,
Fargate

Orchestrate workflows: Step Functions —|

Event-based design: SQ5, SNS, EventBridge —|

=

Secure workloads: KMS, 1AM, PrivateLink —=— Task

Optimize performance: 53 + Glacier, _,

CynamoDB + DAX, EBS gp3

Monitor apps: CloudWatch, X-Ray,

Optimize cost: Spot, Tiered storage, Budgets —*

Ingest billions of events per hour and process
them serverlessly: Use Kinesis + Lambda + 53

Run a global web app with <100ms

worldwide: Use CloudFront + Global —
Accelerator + Multi-region deployment

Low-maintenance architecture for a retail app
with unpredictable traffic: Use Lambda, AP -

Gateway, DynamoDB, 53

High-throughput file system shared across AZs _J

Config —

latency

for a media firm: Use Amazon FSx for Lustre

Compute: 5pot, Fargate, Lambda
DB: Avurora Serverless, DynamoDB on-demand
Storage: 53 Intelligent-Tiering, Lifecycle rules

Data Transfer: Use VPC endpoints, CloudFront,

AT inetaneos Cost-Saving Strategies 2.6 Design Cost-Optimized Solutions
Observability: CloudWatch with custom
retention
ise Budgets, Cost Explorer, Trusted Advisor
Fine-grained access: 1AM policies, Resource
policies )
Application auth: Cognito, I1AM Identity Center —— Identity & Access —,

Federation: SAML, OIDC + AssumeRole —

At rest: KMS, SSE-53, SSE-KMS, EBS —_
encryption

In transit: TLS 1.2+, ELB S5L termination, —_
HTTPS

Use Privatelink, VPC Endpoints to avoid
Internet exposure

e S—

Enable GuardDuty, Security Hub, Macie for |
monitoring

Object storage: 53 + Lifecycle policies —,
File storage: EFS (Linux), F5x (Windows, Lustre) —,

Block storage: EBS gp3/io2 —

Encryption —

— Storage —,

Archive: 53 Glacier, Deep Archive —

Use Compute Optimizer to identify instance

sizing )

Use Spot Instances for batch/fault-tolerant

workloads

Use ARM-based Graviton2/3 for cost and
performance

Relational, high performance: Aurora, RDS —,

_—

Scalable NoSQL: DynamoDB (with DAX/streams) —,

Caching: ElastiCache (Redis/Memcached) —— Database Selection —

Time-series: Amazon -
Timestream
Analytics: Redshift, Athena, —

QuickSight

Recommended Resources

Summary Cheat Sheet

2.4 Design for Performance

Efficiency

DOMAIN 2: DESIGN
FOR NEW @

SOLUTIONS

Designing greenfield AWS architectures that

Core Competency

reguirements.

~ Core Design Principles =

are highly available, scalable, secure, and cost-
optimized, while fulfilling specific business

Fault tolerance: Design systems to operate even
" when components fail

High availability: Maximize uptime via
a8 redundancy

~ Elasticity: Auto-adjust resources with load

.__ Resiliency: Recover from infrastructure and
service-level failures

~— ELB (ALB/NLR): Distribute traffic across AZs

ASG (Auto Scaling Group): Automatically

"_- add/remove EC2 instances

~ 53: Regional storage across 3+
Als

— Key AWS Services —— Avurora: Multi-A7 and up to 15 read replicas

— Why Decouple?

2.2 Design Loosely Coupled and

Event-Driven Architectures

2.3 Design Serverless and Container-

Based Solutions

- Route 53: Global DNS with latency and
health-based routing

~ Lambda: Serverless scaling per request

.__ Global Accelerator: Low-latency routing across
AWS edge locations

Prevent cascading failures
lsolate components for easier scaling

Increase maintainability and flexibility

SQ5: Message queue for asynchronous

" processing

— SNS: Pub/sub for parallel delivery

“— Event-Driven Patterns —— EventBridge: Event routing and filtering

—~ Lambda: Serverless event consumers

.__ Step Functions: Orchestration with retries, error
handling, branching

~— Lambda: Stateless compute
— APl Gateway: HTTPS REST or WebSocket APls

DynamoDB: NoSCL, serverless with on-demand
" scaling
~— Serverless Design =—— Step Functions: Workflow orchestration

__ 53 + EventBridge: Trigger events on object
uploads

|__ Aurora Serverless v2: Scalable relational
database

“— SageMaker: Serverless ML training & inference

Use Provisioned Concurrency for Lambda
cold start mitigation
[~ Patterns

Use DLQ for failed events (Lambda, SQ5)

~— ECS5: Fully managed container orchestration

— Fargate: Serverless compute for containers

“— Containerized Design ={— EKS: Kubernetes orchestration

| App Mesh: Service mesh for
microservices communication

.__ Service Discovery: Via Cloud Map or Route 53
for ECS tasks



