AWS Lambda Developer Guide

DynamoDB Best Practices

535 Developer Guide

Essential AWS Docs & References

Step Functions Developer Guide

AWS SDK for Python (boto3)

APl Gateway Docs

Lambda: stateless, event-driven compute; use
versions/aliases

APl Gateway: HTTP/REST APIs with throttling,
caching, auth

DynamoDB: NoSQL with on-

demand/provisioned modes, indexes

S5Q5/5N5: queuve-based async messaging; FIFO

vs standard

Step Functions: serverless workflows; handle
retries visually

CloudFront: global CDN with origin failover and

caching

ElastiCache: Redis/Memcached for speed,
session, state

SDKs:

boto3 (Python), aws-sdk (Nodejs),

include retry logic

Partition key design: avoid hot keys by L

distributing workload
LSI/GSls: enable alternative query patterns

Provisioned vs On-Demand: use on-demand for
unpredictable traffic

DAX: in-memory caching for DynamoDB

Batch operations: use BatchGetltem and

—

—t— DynamoDB Best Practices —,

o

—
BatchWriteltem for efficiency
Event-driven: 53 — Lambda, 5Q5 — —
Lambda
Queve-based decoupling: Frontend — 505 —
Worker )

Fan-out: SNS — 5Q5, Lambda, HTTP -

Workflow orchestration: Step Functions —
Lambda chain

Avoid multiple retries for same SQS message:
use visibility timeout + DLO )

Fix slow Lambda first invoke: use provisioned
concurrency )

Send file securely to 53 for 1hour: use pre-
signed URL from SDK

Coordinate 3 Lambda steps with error handling: |
use Step Functions with retry logic

_—

— Service Integration Patterns —

— Example DVA-CO02 Scenarios —

Resolve Lambda throttling: increase reserved
concurrency or use DLQ

e

SDKs auto-retry 3-4 times by default —,

Customize with exponential backoff plus jitter —

— Retry Logic and Backoff —,

Handle errors like ThrottlingException,
ProvisionedThroughputExceededException

Integration caching: reduces backend calls
using TTL and key-based caching

Authorization caching: speeds up custom
authorizer responses

Stage-level caching: can be toggled per
stage/environment

CDN for static and dynamic content
Works well with 53 + Lambda@Edge

Supports signed URLs and geo restrictions

Redis: in-memory store with pub/sub, TTL,
persistence

Memcached: lightweight, multi-threaded cache —,

Caching strategies: write-through, lazy loading,

TTL management )

_.ﬁ
—— API Gateway Caching —
—
CloudFron —
t

Use cases: —= Amazon ElastiCache (Redis/Memcached) —*

Caching DB queries —/

Session state for apps —

Temporary computation storage —

15 Optimize Application
Performance

1.4 Implement Application

Resiliency and Performance
Enhancements

DOMAIN 1I:
DEVELOPMENT
WITH AWS SERVICES

Z

~ Develop and deploy serverless applications

"~ Lambda)

efficiently

1.1 Develop Code for Applications
Hosted on AWS

1.3 Integrate Services for Decoupled

Architectures

— Use AWS SDKs to interact with services

Implement service integrations (e.g, 53 +

~— Handle application errors and performance

.__ Use Step Functions, messaging, and caching

Runtime support: Python, Node s, Java, Go,
MNET, Ruby

Triggers: 53, APl Gateway, EventBridge,
DynamoDB Streams, 505

Versions & Aliases: enable traffic shifting and
deployment strategies

Environment Variables: key-value store, can be
encrypted with KM5S

AWNS Lambda

Timeout: maximum 15 minutes

Memory Allocation: 128 MB to 10 GE (affects
CPLU)

Best Practices

APl Gateway + Lambda Integration

Use provisioned concurrency for low-
latency apps

Externalize secrets using Secrets Manager or
55M Parameter Store

Enable X-Ray for
tracing

Lise layers to include dependencies

Proxy mode: passes full request/response
(most common)

Mon-proxy (custom) mode: granular control,
requires mapping templates

Secure APls using l1AM, Lambda Authorizers, or
Coagnito User Pools

SDK actions: PutObject, GetObject,
DeleteObject (basic CRUD)

Presigned URLs: secure temporary access

Amazon 53

53 Event Notifications: trigger
Lambda/SN5/5Q5 on uploads

Use S3 Transfer Acceleration for faster uploads
globally

~— Examples:

53 Upload: s3put_object(Bucket="mybucket’,
" Key="file.txt', Body=bytes)

DynamoDB Get:

AWS SDKs (Python boto3, Node js aws-sdk) —— dynamodb.get_item(TableName="Users', Key=

{id": {'5": "123'}})

- SQS5 Send: sgs.send_message(Queuelrl=url,
MessageBody="msg")

. Handle retries and exponential backoff
(automatic but customizable)

Standard queuve: high throughput, at-least-

" once delivery

FIFO queue: ordered, exactly-once delivery,

I~ slower

~— Amazon 5Q5 (Message Queving) =t+— DLQ (Dead-letter queue): for failed messages

“— Step Functions =

— Amazon SNS (Pub/Sub Messaging) —

[~ Visibility Timeout: prevents duplicate processing

Short polling: returns immediately

Long polling: reduces empty responses and
costs

Topics distribute messages to multiple
"~ endpoints

L— Subscribers: Lambda, 5Q5, Email, HTTRS

|__ Message Attributes: filtering logic for
subscribers

,__ Use SNS — SQ5 for fan-out with guaranteed
delivery

State Machine: visual workflow using

 JSON/YAML

Service Integrations: Lambda, ECS, Batch,

™ DynamoDB

— Error Handling: catch and retry blocks built in

— Wait States: delay or poll for result

.__ Use Express Workflows for high-volume short-

duration steps



