Identify performance bottlenecks using GCP

tools.

Understand scaling strategies for Compute

Engine, Cloud Run, GKE

=

=

Use autoscaling based on load metrics. —,

Apply best practices in caching,
networking, and storage.

Perform load testing and improve performance

using results.

—

Use profiler, trace, and debugger for

optimization.

Optimize cost without sacrificing performance. —

Code Optimization: Cloud Profiler, Debugger —,

Latency Reduction: Trace, CDN, in-
memaory caching

Scaling: Cloud Run, GKE, Managed Instance
Groups

Load Testing: k6, JMeter, Locust —|

Database Tuning: Indexes, caching, replicas —

Metwork Optimization: Cloud Load Balancing,
Cloud CDN

Performance Monitoring: Cloud Monitoring,
Alerting

Autoscaling Config: CPU, latency, custom
metrics

Cost Optimization: Right-sizing, Preemptible
WVMs, Committed Discounts

Use Cloud Monitoring dashboards for
latency, error rates, saturation, CPU/memory
usage.

Set SLO-based alerts to act before
performance degrades. )
Key Metrics: —,

Application: Response time, throughput,

error rates.

Infrastructure: CPU/memory usage, network
latency.

User Experience: Real User Monitoring (RUM),
Synthetic Monitoring.

Tools and Techniques: —

Google Cloud Monitoring for unified insights
and alerts.

Structured logging via Google Cloud Logging. —f

Integrate monitoring into CI/CD pipelines for

S
early detection of issues.

Strategies: —,
Autoscaling: Scale down during low traffic. —|

Committed Use Discounts: Prepay for
predictable workloads. Y

Instance Rightsizing: Match VM size to -
workload.
Preemptible VMs: Use for fault-tolerant batch
jobs.

Efficient Data Storage: Lifecycle rules to move
data to cheaper tiers.

Additional Tips: —

Choose the right instance types based on
workload.

Use preemptible VMs for cost savings. —
Optimize storage class selection. -

L everage serverless architectures for cost-
effective scaling.

Monitor performance to identify inefficiencies
and adjust resources.

Definition: Storing copies of data temporarily to
speed up future requests.

Types:
Edge Caching: Cloud CDN.

In-memory Caching: Memorystore
(Redis/Memcached).

Application-level: HTTP caching headers, lazy
loading.

Benefits:

Reduce backend load.
Improve response times.
Save costs.

Caching Levels:

Client-5ide: Browser storage.

Server-5Side: Application or dedicated
infrastructure.

CDN Caching: Static assets close to users.
Key Caching Types:

In-Memory: For session data, frequent queries.
HTTF Caching: Controlled by cache headers.

Database Caching: Cache query results or
materialized views.

Best Practices: —,

Query Performance: Use indexes, avoid N+1
queries.

Connection Management: Use Cloud 5QL Auth
proxy, connection pools.

Caching: Cache frequent reads with
Memorystore.

Scaling: Use read replicas, sharding, partitioning. —.

Storage Tiers: Choose pricing/performance
tiers appropriately.

Technigues: —

Indexing: Choose suitable index types for
queries.

Quuery Optimization: Analyze execution plans,
avoid SELECT *.

Schema Design: Balance normalization and
denormalization; choose proper data

types.
Connection Pooling: Reuse connections to
reduce overhead.

For high-throughput, low-latency needs |
consider Spanner, Bigtable, or Firestore.

)

BB 5.10. Continuous Performance

Monitoring

5.8. Using Caching Effectively

Exam Prep Checklist

Summary Cheat Sheet

Domain 5. Optimizing

Z

Service Performance

5.2. Identifying Performance

5.4. Application Optimization

Techniques

55. Load Testing and Benchmarking

5.6. Scaling for Performance

Goal: Improve speed, efficiency, and reliability
— of systems for better user experiences while
minimizing cost and resource use.

Key Focus Areas: Reducing latency, enhancing
— throughput, lowering error rates, ensuring
scalability and efficiency.

Definition: Technigues to improve
responsiveness, speed, efficiency, and reliability

" of cloud applications by identifying bottlenecks
and enhancing resource usage.

— Key Goals:

Maximize User Experience with faster response
" and higher availability.

. Reduce Operational Costs by optimizing
resource usage.

. Enhance 5calability and Reliability to handle
increased loads seamlessly.

— |mportance:

. User Expectations: Instant access expected;
slow apps cause dissatisfaction

- Business Impact: 1-second delay can reduce
conversions by 7%.

- Resource Efficiency: Optimize cloud resource
use to maximize ROL

Definition: System points limiting speed and
efficiency, eq, slow queries, network latency,
inefficient algorithms.

Characteristics:

Performance degradation with slow response
or reduced throughput.

Increased resource consumption causing
inefficiency.

User frustration due to timeouts or errors.
Common Bottleneck Types:

CPU: High utilization, slow responses.
Memory: Excessive paging, crashes.

l/O: Slow data retrieval, low throughput
Metwork: High latency, dropped packets.
Diagnosis Tools:

Cloud Profiler for CPU/memory hot paths.
Cloud Trace for latency across microservices.
Cloud Debugger for live code debugging.

Cloud Monitoring for system metrics.

Instance Sizing: Choose machine types (E2, N2,
— C2, M2), use autoscaling (Cloud Run, GKE,
Managed Instance Groups).

Storage Optimization: Select Standard vs. 55D
— Persistent Disks, Filestore for NFS, Cloud

Storage with lifecycle rules.

MNetwork Optimization: Use Global Load
_— Balancers, Cloud CDN for static content,
Private Google Access for internal traffic.

— Goals:

- Performance Optimization to handle load
without degradation.

— Cost Efficiency by optimizing resource use.

- Scalability and Flexibility for demand-based
scaling.

~ Technigues:
— Code Profiling with Cloud Profiler.
— Lazy Loading resources when needed.

Asynchronous Processing using Pub/Sub, Cloud
™ Tasks.

Caching with Cloud Memorystore or in-memory
~ cache.

L— Compression using gzip or Brotli.

Connection Pooling for efficient DB

"~ connections.

— Key Techniques:

|__ Code Optimization: Profile and optimize
algorithms.

| Caching St[—::tegie.ﬁ: In-memory and
HTTP caching.

,__ Database Optimization: Indexing, connection
pooling.

- :ﬁE}iﬂd"llmr‘lﬂJS If‘mcesaing: Background
jobs, microservices.

.__ Frontend Optimization: Minification, bundling,
responsive design.

— Load Testing:

" load.

" Cloud Monitoring.

" throughput, error rate, resource usage.

| Goals: Assess limits, identify bottlenecks,
validate scaling.

~— Benchmarking:
I— Measure performance against standards.

__ Goals: Set baselines, guide optimization,
facilitate comparisons.

to production.

Vertical Scaling: Increase CPU/RAM of

" instances.

Horizontal Scaling: Add instances to handle
" load.

— GCP Services:
— Cloud Run auto-scales per request.
— GKE uses Horizontal Pod Autoscaler.

| Compute Engine uses Managed Instance
Groups with autoscaling.

- Autoscaler Triggers: CPU utilization, request
latency, custom metrics.

[— Importance:

Maintain user experience with consistent

h—
performance.

[— Optimize cost by scaling based on demand.

— Ensure business continuity during traffic
spikes.

Simulate user traffic to evaluate behavior under

Tools: JMeter, Locust, k6, custom scripts with

Metrics: Request latency (P50, P90, P95, P99),

.__ Tip: Run tests on staging environments similar



